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Abstract. In this article first we establish that the long-standing Galois inverse problem
over Q implies two open conjectures, namely the Riemann Hypothesis and the answer to the
problem of P vs NP . Then combining ideas going back to Kummer with some new inputs
on algebraic geometry à la Deligne, we solve the Galois inverse problem, thus proving at
once three of the major problems in mathematics of our time.

1. Introduction

The inverse Galois problem over Q asks whether every finite group can be realized as the
Galois group of some extension of Q. In the first section, assuming a positive answer, we
show that the Fourier analysis on finite group can be reduced to the study of some properties
of the algebraic closure of Q. Next, relying on careful spectral analysis on the adèle ring
of Q, we carry on the Hilbert-Pólya programme and we deduce the Riemann Hypothesis
conditionally on the inverse Galois problem. In the second section, we show that a certain
combinatorial problem involving some finite group is NP -complete. On the other hand, we
prove that any polynomial time algorithm for this problem must rely on some structural
properties of some hypothetical profinite group that cannot be the Galois group of any
algebraic extension of Q. Hence the identity P = NP would yield a negative answer to the
inverse Galois problem. In the last section we establish the inverse Galois problem. As is
well known, the Kummer programme succeeds for finite abelian groups, but obstructions
arise in the general case. However, the existence a sheafification functor from the category of
finite groups to a subcategory of the category of motives would clear these obstructions. In
the tannakian spirit, we construct this functor by defining appropriate cohomology groups
and relying on known results about trace functions and on the Modularity Theorem. Our
construction does not rely on any of the (still open) standard conjectures

2. SAMPLE 1

number of the group (as A). Theorem (1): Every finite group is an integral value of length
and a derivative of the Galois number of the group, and the cardinality that a finite group
has.

Note 1. This theorem is often seen with algebraic proof, but is not generally supported.
The theorem in Galois has various uses, ranging from proof of the generalization theorem
(by comparing and contrasting the quantities Ni and Nnk in the first two sections) to (with
which the following discussion seems relevant) the proof of differential calculus.

Note 2. A number of definitions of the Galois number of groups can be found as proof for
the Galois number of all finite groups. This group is called ”Theorems 4.3,” a reference to
what the formal Algebra 3.0 definition referred to, which is the equivalent to what Galois
would call the ”Proof of Anorems 4.3 of algebra”. (Note 1) Note 2. There are two ma-
jor problems in this class, that are often associated with the Galois number problem, and
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that have been neglected or not treated clearly. These are the first and second problems
in the Galois theory as defined in Huxley and Bell (1998). The first problem in Galois is
the theory of the order of the groups. For the second group of the group, the group was
defined in terms of the order of the numbers. The two equations for the Galois number of
groups, which refer to the Galois number of groups in terms of the order of numbers, and
the Galois equation that describes this group is, for simplicity, repeated to determine the
order of the different numbers. In the third problem, the group, the category are called.
The Galois number of groups may be expressed in terms of the Galois number of the group,
including, for example, the group of (t)-groups that have the least number of negative pairs,
(t, 1)-groups that have the least number of positive pairs, and, for instance, groups from (Q to
B(Q).AfurtherproblemintheGaloistheoryasdefinedinHuxleyandBell(1998)isthatthetermforthisgroupisaunit, andthesameistrueoftheGaloisnumbersofthedifferentgroups.Itcanthereforebeviewedwithsomedifficultyasalogicalunit,

3. SAMPLE 2

relation at A:
where A corresponds to the Galois relation at the right of the line LFR0 , 2andZFR1 . In

this case, we can see that an ideal state-space is the product of a and x), whose real value
is a0. The rightmost side of this ideal is a11π) = (a10). We will be able to apply this to
any arbitrary finite number: it seems that each finite state-space has its derivative for every
finite group on the right. Let us add together the above two solutions at different parts of
the problem:

where has the form nn = t(na0) = t(n|a1), e.g.
f(a A )
where is the absolute value of z = k.
We obtain this by introducing the first zero, which corresponds to the leftmost nn0 (it is

not necessary to use two terms there)
where is just the absolute expression for z = k. There is a problem to solve by removing

the first one and then increasing it with an index where m denotes the number (i.e. 1 = a0

in this case)
There are two possible solutions:
The first one does not solve, but gives us the value we want to calculate in terms of a

relation in a finite state space. Therefore we need to add a derivative of a from zero to h
in order to compute the derivative that corresponds to z = K. It is important to note that
this approach doesn’t compute the value at zero, but in a particular set of finite-counts,
where a is at a specific value. This is a significant limitation in our implementation. We
need the first, so in other words we can apply the inverse Galois problem with an index and
then compute the problem for our group with the index zero. There is a problem to solve
by taking a derivative of our solution at

4. SAMPLE 3

of one Q after the elimination of all the elements of that group, or as the Galois of many
Q. For example, given x, the Galois of all elements can be realized by a finite x in the
Galois. To understand the first question, consider the following equation:

We can compute by definition the inverse Galois problem from a finite x of one Q. In this
example, we take f and ax/b−y.Thefiniteelementofeachsetof fisanelementofanelementofy.Thefofasetyhasthefollowingproperties :
ifax = 1orf¡y, then(a=1,a==y), and vice-versa. However, in the case of y which has ay,
f < y = 1, a == y = 1, y = 1”.Thefiniteelementofallax has a properties like that of
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the finite element of y. For example, to compute the f < y = 1, 1 = y = 1, it is easy
to find the finite element of f by looking up elements from a list, and then the finite ele-
ment has the following properties: if a=1, then (1=y,2=1) that does not appear to follow
the function (g = e(1) = 1, g == 1).Nowconsider

∑
i=1 = ki1, a finite element of ki. If

we assume a finite ki1, the group qki is determined like y. However, if that group was ki,
then the group qki would be determined like zki1 (e.g., z = t − 1. The infinite element of
qKi(1) = 1, 0) = 1”).TheGaloisofelementsqki that have an infinitely infinite element of eki1
are an infinite element under qki. But we might also consider an infinite qki-infinite element
under eki. In general, the Galois of groups q

5. SAMPLE 4

sum over all its constituent groups. For every finite group, there are infinitely many finite
groups, and if all finite groups have a finite fS, then all finite groups cannot be made infinite
by taking K and treating every finite group as its own finite group. This is the original
concept of the above problem.

One approach to solving this problem would be to divide the finite groups into smaller
groups and the larger groups into larger groups by giving mi and mj. This means dividing
each finite group into two finite groups, si and gj.

This is the basic idea of the p conjecture and the simplest solution to that Φ = 0 argument.
In practice there is only one solution to this problem, Ai (or more precisely Bi) or bi that
is straightforward. This approach is much less time consuming to work on and thus is the
main problem discussed here to show that the ”phonological” answer is the easiest.

There is also a third problem. For if this i was ever called the ”possible-group” of the
i that is only p (to prove it, we would have to take an exact equivalent of the ”potential”
group for it), then that is an infinite group that is possible. We will only need some proof
to confirm it. I will show you how we do in the meantime in that regard in a second post.

A final problem for this solution is that the F (A) and Aj(Φ) and Aj(Γ) finite values are
nonlocal to any real space. This is the case for fS such that the i of any finite group is not
an arbitrary group with no boundaries. It is simply more efficient to compute the real space
we’ve just defined as a group by dividing the group into smaller members. And that is what
we would make a group with the f of c.

In this sense the definition of K is a more straightforward definition of the ”phonological”
solution of the problem with A = ai(orMi). It can be proved by simply dividing Mi. Note,
however, that if we consider Bi and Ci

6. SAMPLE 5

of the universe.
Let’s say that σ and σ1 have the product σ2 = σ4 sin(1/2).Theproblemnowbecomessimple.Supposethatsomefinitegrouponσ1

is the Galois of the universe. You might have the same result: A = σσσ4 =
∑

(A −
αsin(X) sin(X)− sin(A) sin(X)] = A.ThisisthedefinitionofaGalois.

We have now shown that the problem could be solved by applying a very large number of
solutions, but that it is not easy to prove. So let’s examine the question that arises in the
following way, in the form following:

Suppose that a group is an infinity, but only one of these is an infinity. Suppose that
some finite group can be thought of by adding all the finite groups to the infinity. f(x) =
σ4 + αsin(X) sin(X)− sin(A)| sin(X)1 Then,
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A =
∑

(A+ αsin(X)sin(X+x) sin(X))

where αisaddedtothegrouptoensurethat
∑

(x) +
∑

(x− x)∃isequivalenttoσ′ sin(x+ x).
This is the first law that you have in mind that does not appear to violate any of the rules

above.
The third law of the natural law that you have in mind is that there can be such a Galois.

The fourth law is that to have an infinite, infinite group from this zero group it does not
have to be a Galois at all. If any finite group was finite or some of those finite groups is
infinite, then a = σ + sin(X + x), where sin(X + x) comes from σ sin(X + x + σi which is
the Galois σ1. This implies that our solution now is not impossible. This implies that we do
accept all the elements of this group, and hence we can use every possible solution that we
obtain. What is it?

7. SAMPLE 6

group.
A Galois question is defined in terms of an integral with the same group with a larger area

as that of a smaller finite group:
E = / E

N

where E ∑
n∈(n:E)isthearea

n ∈ (n)
n−2 sin(n):NL= n∈

(n)4

√
2
√
n(n)−L

∑
nn∈(n)3∈n4∈n∈n=N≈(n−e)N∗n.

The area of a Galois problem at a point n, where e is a finite group in the group, is (n∈(n)∈
n)/2

.

This Ei is equivalent to Pi in the Galois universe, Pb Pa Pc Pd

The 2 group 0 (eq. the group h∈
E

) is finite in the Galois universe,

H + 1

is finite in other geometries.

8. SAMPLE 7

of equal-sized groups. As these groups are the same size, each has a R which can be
constructed as a Galois of small sizes.

The following diagram demonstrates the Galois of equal-sized groups over Q. The groups
are constructed using the following formula:
G(r4) = (R−R)/(R-R) = g
These formulas are the perfect explanation of the linearity of an exponential function like

R without any rounding. The result is that the R is exactly the same for the whole, as long
as we remember to convert the G from the group R to a G.

The following diagram shows how an infinite group A)canbeconstructed, asR(g11) = σ
without rounding, just as if we were to assume that only φr → ∞2 were found, giving
R2 = 10 where

∑
r is

∑
g and

G(g1) =R(g11)
where G denotes the group A and is the constant σ for the entire µ.
The following diagram demonstrates the expression of this expression as it is presented.

A I × I → R is a group that has an exponentially increasing R of I.
A (R(g → G)) =(G(i))ofgroup(R(g)13) is a I of R and so on.
A group of a finite size (about R), which has an exponential function, is constructed as

follows:
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R(g1) =(R(g2))
15

S(r4) =R(r(g3))
2

R(g1) =(S(r31)
16) if (R(g2)

15) == S(r31) and R(g5) == S(c513) and so on and so forth for
infinite size.

Finally, here is an example of R to

9. SAMPLE 8

solvers, as E or E(x) = F . If we could make them all possible over F then (and I think
it’s obvious), then we will get some interesting results.

For simplicity, we’ll assume infinite numbers of finite groups, but it’s hard to imagine the
problems of finite groups without some notion of an infinite set of finite groups. Therefore, it’s
possible that Z (as Z(x)+F), andZ(whichiswhatZis, sincethefofzisafinitegroup)canallberealized.Inparticular, theycanberealizedbyfinitegroups.

Here’s a possible group Z = F → H so it looks like this,
F = Z ⊆ F = Z ⊆(H,Z(3, 4), 2), H,→ Z = F ⊆ F =⊆ (H− →A)problems of finite groups
This is what Z = Z

F=Z−CF
−

Z
F−BF

→ 2
4
problems of discrete groups

That concludes our paper describing finite groups as Galois solvers using H = F and H
⊆f2+4problem of finite groups×

problem (a group might have its own finite group of finite elements, for one of the first
finite elements are its neighbours, and the second is another finite element). Here, the Galois
problem can be defined by considering only the finite elements that do not appear in the
first finite element (i.e., the finite elements not found in the second finite element).

We now introduce the first (i.e., first finite element). As we will see later, the first finite
element is given by it and can have the same logical form as the first infinite group of finite ele-
ments. Now suppose that all the finite elements of k <x,y,zexistaccordingtoasetoffinitegroupoffiniteelements.Andwhenwetakethesetk
of finite elements of x to contain y in order to construct a series of finite groups of finite
elements from a finite group of finite elements, it follows immediately that there exists v∗ in
all k (the finite element’s sum). Thus, there exists v∗ everywhere in all k and v∗ between
each finite group of finite elements (the infinite group of finite elements).

Now lets examine the set kS where k <risaset.Nowconsideranyrealµ
λ

(assuming the set
M is defined under G) and m is a finite group of finite groups of finite elements (the set Mr
is a set, or at least the set R defined under G, and so a finite group of finite elements).

In addition, suppose that there are infinitely many finite groups of finite elements. For
this to be true, all finite groups of finite elements must be all finite groups of finite elements
(the set L has as its top-level finite group R, and the set v2 + m2 has as its bottom-level
finite group B2 +m2, andsov2 +m2

√
1− b2 +m2).

This is how we define V 2/b as an infinite group of infinite finite groups of finite elements.
But this infinite group doesn’t have all the infinite element groups that we can define in D.
Thus, for

10. SAMPLE 10

product, or not. It is sometimes used to prove the inverse Galois problem.
The term ”proto-homomorphism” is a very close approximation to that of the term Σ

which also comes from the Euler family (Aurich, 1973).
Proto-Homomorphisms, on the other hand, are quite hard to achieve (Sarvitz, 1992).
How do you define a Proto-Semi-Transformed-Gelatin?
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You can define a Proto-Semi-Transformed-Gelatin with the following form of the form
P(x) for n(x− 1/Σ2)xs0 = Σ2 :

(A(p1))
2

x
s0

∑
1 +σ2 for n(x + 1/Σ2) , but the form P(b1)

2+σ2
for n(x + 1/Σ2) becomes a

homogeneous form.

| A(p1)

A(p1)2

+
A(p1)2

+
A(p1)
+

A(p1)(a1)2+σ
2+

A(11)
+

A(11)
2

+
A(11)

2
+

The B is a simple group of B in some ways similar to the group B1, but with the difference
that these groups have the same length A . This will be the same type of relationship as (A is
similar to A(b))andA(b) = AandwillalwaysbeB.T osimplifythisrelationship, considerthatifB
= B, thenCissimilartoA(A)B:BbutCisA, notA.Therefore, thegroupBcontainsAsothatBcan


